Sunnyside RNG

Traffic Impact Analysis

Sunnyside, WA

July 10, 2023

Prepared by:

JUB

J-U-B ENGINEERS, Inc.
3611 S. Zintel Way
Kennewick, Washington 99337

Sunnyside RNG

Traffic Impact Analysis

Sunnyside, WA

July 10, 2023

Prepared by:
Spencer Montgomery
Travis Marden, PE

(JUB)

J-U-B ENGINEERS, Inc.
3611 S. Zintel Way
Kennewick, Washington 99337

TRANSPORTATION IMPACT STUDY CHECKLIST

Project Name：Sunnyside RNG
City Reference Code： \qquad

Provided？ Yes	Page No． No \qquad Appx	
		BACKGROUND INFORMATION
Yes	No Cover	inaakhingron PE Stamp and Signature
Fes	No 1，17	INTRODUCTION AND SUMMARY
		EXISTING CONDITIONS
Yes	No 3－4	Roadway Network－summary of roadway classifications，lanes，speeds，transit service and facilities，
Yes		Analysis Periods Correct（ ロAM，ロMid－day，ロPM ■Affernoon＿，Saturday
	No 4，5， 7	Existing Traffic Operations（Existing LOS，traffic volumes（new counts ），speeds ，crash data
		IMPACTS
Yes	No 10－12	Trip Generation－Daily，peak hour trips generated by site development
	No 14	Level of Service Analysis－projected LOS with site build out，existing，and background traffic growth
Yes	（No N / A	Future year 20 －year analysis required for zone change or conditional use
Yes	（No）N／A	Signal Warrant Analysis
Yes	No 14－15	5 Turn Lane Warrant Analysis
Ves	No 8	Access Spacing Standards
（10）	No 8	Analysis of intersection and stopping sight distance at frontage road access point（s）
Yes	（No）N / A	Identify safe route to school or school bus stop（Contact with school district）
Yes	NO N／A	Analysis of safe pedestrian／bicycle access to nearest transit stop（if within $1 / 2$ mile of project site）
Yes	（No）N／A	Identify accessibility to public transit
Yes	（vo）N / A	Account for planned roadway improvements at future build year Dand 20－year horizon
		MITIGATION
Yes	No 14－15	Identify need for right／left turn lanes，storage capacity and length
（es	No 15	Identify possible corrections of any LOS deficiencies
Yes	NO N／A	Identify any access deficiencies（including transit／pedestrian／bicycle connections）
Yes	（N0）N / A	Identify any TDM measures
		FIGURES
	No 2	Vicinity Map
Yes	No Appx	Site Plan
Ces	No 6	Existing peak hour turn movement volumes（counts conducted within previous 12 months）
（1es）	No 12	Trip Distribution（\％）including Added Project Peak Hour Traffic Volumes（see sample）
Yes	（NO）N／A	Approved Projects Peak Hour Traffic Volumes（see sample）
Yes	（No）N／A	Programmed transportation improvements and transportation mitigation outlined in study
		TABLES
ves	No	Intersection Performance Existing Conditions
80	No 10	Project Trip Generation
Yes	No 14	Intersection Level of Service
		OTHER
Yes	No	Technical appendix－sufficient material to convey complete understanding of traffic issues（e．g．HCM or similar analyses，trip generation calculations，signal warrant analyses，turn lane warrant analyses，queuing calculations，signal timing sheets，traffic counts，etc．）

Completed By：Travis Marden
Date： \qquad

Table of Contents

Introduction 1
Existing Conditions 3
Land Use 3
Roadway Characteristics 3
Collision History 4
Traffic Volumes. 5
Traffic Operations 5
Future Conditions 8
2028 No-Build Conditions 8
Proposed Sunnyside RNG 8
Trip Generation and Trip Distribution 10
Traffic Operations 14
Left Turn Lane Analysis. 14
Right Turn Lane Analysis 15
Mitigation 16
Summary and Recommendations 17
List of Figures
Figure 1. Vicinity Map 2
Figure 2. Existing PM Peak Hour Traffic Volumes and Lane Configurations 6
Figure 3. 2028 No Build PM Peak Hour Traffic Volumes 9
Figure 4. Anticipated Dairy Farms Served 11
Figure 5. Trip Distribution Percentages and Site Generated Trips. 12
Figure 6. 2028 Build PM Peak Hour Traffic Volumes 13
List of Tables
Table 1. Study Area Roadway Characteristics 3
Table 2. Level of Service Criteria for Intersections 5
Table 3. Summary of Existing (2023) Level of Service and Delay. 7
Table 4. Summary of 2028 No-Build Level of Service and Delay 8
Table 5. Trip Generation 10
Table 6. Summary of 2026 Build PM Peak Hour Delay and Level of Service 14

Appendices

Appendix A: Washington State Department of Transportation e-mail on TIA Scope
Appendix B Collision History 2020-2022
Appendix C: Traffic Volumes
Appendix D: Highway Capacity Software Level of Service Worksheets
Appendix E: Midvale Industrial Park and RNG Site
Appendix F: Turn Lane Analysis Guidance

Introduction

The Sunnyside RNG facility is planned to be part of the Port of Sunnyside Midvale Industrial Park situated west of SR 241 (Sunnyside-Mabton Road) and south of Alexander Road. It is anticipated to be one of the first facilities within the Midvale Industrial Park, occupying approximately 49 acres of the nearly 500 acres. A Vicinity Map is shown in Figure 1. The initial access to the Midvale Industrial Park will be a new north-south roadway accessing Alexander Road approximately one-quarter mile west of SR 241.

The City of Sunnyside and the Washington State Department of Transportation (WSDOT) have requested an analysis of traffic operations at five existing intersections during the PM peak hour with the proposed Sunnyside RNG facility in place: Midvale Road/I-82 westbound ramps, Midvale Road/I-82 eastbound ramps, Alexander Road/Midvale Road, Alexander Road/SR 241/Sunnyside-Mabton Road and Alexander Road/Waneta Road, as well as the proposed site access to Alexander Road. WSDOT also indicated that if the proposed development adds 10 or more trips to the I-82 Exit 69 (SR 241/Waneta Road) interchange then a pro-rata share contribution towards a planned roundabout at that location will be requested. See WSDOT e-mail on the Traffic Impact Analysis Scope in Appendix A.

This report describes existing conditions in the vicinity of the proposed project as well as the anticipated future conditions and a description of the methodology used.

Existing Conditions

Land Use

The study area in the vicinity of the proposed RNG site is primarily rural in nature with fields and farms and undeveloped land. Approximately one-half mile to the west on Alexander Road are some industrial land uses associated with agricultural services and processing. One-quarter mile to the north of Alexander Road is I-82, north of which is the majority of the City of Sunnyside including the concentration of the population of the city.

Roadway Characteristics

The study area is served primarily by two lane collector and arterial roadways without sidewalks. Table 1 summarizes several features of roadways in the study area.

Table 1. Study Area Roadway Characteristics

Roadway Segment	Functional Classification	Number of Lanes	Roadway Width (ft)	Speed Limit (MPH)	Presence of Curb, Gutter, Sidewalk
Alexander Road (SR 241 between SunnysideMabton Rd and Waneta Rd)	Major Collector west of Waneta Minor Collector east of Waneta Rd	2	~34' 20'	40 w/Midvale 35 e/Midvale for 2100' 50 to Waneta 25 e/of Waneta	only sidewalk approximately 240' on south side for one business gravel
Midvale Road	Minor Arterial north of Alexander Rd Minor Collector south of Alexander Rd	3 2	$\sim 56 '$ 38^{\prime}	35 40	both sides have curb, gutter and sidewalk from 480' north of Alexander Road to >1 mile to the south
Sunnyside- Mabton Road (SR 241 south of Alexander Rd)	Minor Arterial north of I-82 Major Collector south of I-82	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{gathered} \sim 36^{\prime} \\ \sim 36^{\prime} \end{gathered}$	35 55	none
Waneta Road (SR 241 north of Alexander Rd)	Minor Arterial north of Alexander Rd Minor Collector south of Alexander Rd	2	$\begin{aligned} & 38^{\prime} \\ & 26^{\prime} \end{aligned}$	40 40	none
1-82	Interstate Freeway	4	48'	70	none

There are no traffic signals in the study area, all intersections are controlled by stop signs. Each of the five existing study intersections are described below.

Midvale Road/I-82 westbound ramps - the westbound approach is stop controlled and has exclusive left and right turn lanes. The north-south directions are uncontrolled with the northbound providing an exclusive left turn lane and the southbound providing a right turn taper to go westbound on I-82 .

Midvale Road/I-82 eastbound ramps -this is a three-legged intersection with the west leg being stop controlled and serving as both the eastbound off-ramp as well as the eastbound on-ramp which loops to go east. There is an exclusive northbound left turn lane.

Midvale Road/Alexander Road - This is a 4-legged intersection with the east-west directions being stop controlled. The north-south approaches have exclusive left turn lanes. There are flashing yellow lights for the north-south direction and flashing red lights for the east-west directions. The poles for these lights appear as though they are primed and ready for traffic signal heads to be installed when warrants are met.

Alexander Road/Sunnyside-Mabton Road/SR241 - This is a 4-legged 4-way stop controlled intersection with single lane approaches. Each approach has a flashing red light with the stop signs. The east and south legs are SR 241.

Alexander Road/Waneta Road - This is a 4-legged 4-way stop controlled intersection with single lane approaches. Each approach has a flashing red light with the stop signs. The north and west legs are SR 241. The east leg is gravel not far from the intersection.

It is important to note that there are very few sidewalks and no bicycle lanes provided in the study area for pedestrians and alternative modes of travel. No transit service is provided in the study area.

Collision History

Collision history was researched for the last three years of available data in the study area. The following summary is provided, with detailed data provided in Appendix B:

- A total of 22 collisions were reported at study intersections, including:
- 3 at Midvale Rd/I-82 westbound ramps
- 2 at Midvale $\mathrm{Rd} / \mathrm{I}-82$ eastbound ramps
- 10 at Midvale Rd/Alexander Rd/Emerald Rd
- 6 at Alexander Rd/Sunnyside-Mabton Road
- 1 at Alexander Rd/Waneta Rd
- There were no fatalities or serious injury collisions.
- There were four suspected minor injury collisions, two at Alexander Rd/Sunnyside-Mabton Road and two at Midvale Rd/Alexander Rd
- Three collisions resulted in possible injuries, all at Midvale/Alexander
- Half of the 22 collisions involved a vehicle entering at an angle.

Intersection collision rates per million entering vehicles at study intersections range from 0.23 to 1.34 with all but the intersection of Midvale Road/Alexander Road being well below 1.0 collisions per MEV. Calculations are included in Appendix B.

At the intersection of Midvale Rd/Alexander Road 60% of the collisions involved an eastbound vehicle. This could be due to it having the highest delay. As will be discussed below, the 2028 No-Build scenario
will need an exclusive left turn lane, or a traffic signal, for the eastbound approach, which could help to off-set some of the delay and reduce collisions at this intersection.

Traffic Volumes

PM peak period turning movement counts were collected from 4:00 to 6:00 PM at the five study intersections on January 26, 2023. The PM peak hour occurred between 4:00-5:00 at study intersections one and five or from 4:15-5:15 PM at the intersections two, three and four. Turning movement volumes, traffic control, and lane configurations at the study intersections are shown in Figure 2. Raw data for traffic counts is included in Appendix C.

Traffic Operations

The analysis of Level-of-Service (LOS) is a means of quantitatively describing the quality of operational conditions of a roadway segment or intersection and the perception by motorists and passengers. Service levels are identified by letter designation, $A-F$, with LOS " A " representing the best operating conditions and LOS " F " the worst. Each LOS represents a range of operating conditions and one or more Measures Of Effectiveness (MOE's) are used to quantify the LOS of a roadway element. For intersections the MOE used is average control delay in seconds per vehicle. While there are several methodologies for estimating the LOS of intersections, the most commonly used is presented in the Highway Capacity Manual and is the methodology used in this study (HCM $6^{\text {th }}$ Edition). The Highway Capacity Manual LOS criteria for intersections are summarized in Table 2.

Table 2. Level of Service Criteria for Intersections

Level of Service (LOS)	Average Control Delay (seconds/vehicle)	
	Signalized Intersections	Unsignalized Intersections
A	$<=10$	$<=10$
B	$>10-<20$	$>10-<15$
C	$>20-<35$	$>15-<25$
D	$>35-<55$	$>25-<35$
E	$>55-<80$	$>35-<50$
F	>80	>50

Source: Highway Capacity Manual $6^{\text {th }}$ Edition, Transportation Research Board, National Research Council, Washington, D.C., 2017.

For unsignalized intersections "delay" is based on the availability of gaps in the major street to allow minor street movements to occur. The methodology prioritizes each movement at an unsignalized intersection consistent with rules that govern right-of-way for drivers. In other words, major street through and right turn traffic has absolute priority over all other movements. Major street left turns must yield to opposing through traffic and right turns. Minor street through traffic and right turns yield to major street higher priority movements, and the minor street left turns have the lowest priority and must yield to all other movements. As traffic volumes increase, the availability of gaps will decrease and greater delay tends to result in driver frustration and anxiety, loss of time, unnecessary fuel consumption, and contributes to unnecessary air pollution. The City of Sunnyside has adopted the standard for Level of Service as LOS "C" for intersections, meaning the overall intersection LOS must be " C " or better.

The Highway Capacity Software was used to evaluate the study intersections using the lane configurations and the traffic volumes shown in Figure 2.

The results of the analysis are shown in Table 3 and indicate that all study intersections currently function with acceptable Levels of Service "C" or better during the PM peak hour. The Highway Capacity Software results are included in Appendix D

Table 3. Summary of Existing (2023) Level of Service and Delay

Intersection	Overall Intersection	Worst Approach Delay (seconds)/ Level of Service
I-82 Westbound ramps/Midvale	$*$	EB-14.5/B
I-82 Eastbound ramps/Midvale	$*$	WB-18.9/C
Midvale/Alexander	$*$	EB-20.8/C
Alexander/SR241/Sunnyside-Mabton Rd	$10.9 / \mathrm{B}$	NB-11.5/B
Alexander/SR241/Waneta Rd	$8.4 / \mathrm{A}$	$\mathrm{EB}-8.5 / \mathrm{A}$

LEGEND

13.9/B Delay and Level of Service using existing Lane Configuration

* Uncontrolled movements (major street through) not provided for overall intersection analysis for TwoWay Stop Controlled intersections

NB = Northbound, SB = Southbound, EB = Eastbound, WB = Westbound

Future Conditions

This section will describe future traffic conditions without the proposed development as well as future traffic volumes and traffic operations with the proposed development.

2028 No-Build Conditions

To estimate future conditions in year 2028 without the proposed development the existing PM peak hour traffic volumes shown in Figure 2 were increased by 2% per year to represent background growth. The resulting traffic volumes are shown in Figure 3.

Traffic operational or capacity analysis was repeated similar to existing conditions, with the results summarized in Table 4. Capacity worksheets are also included in Appendix D. The results of the analysis indicate increases in delay at all of the study intersections, ranging from 0.2 seconds of average vehicle delay to 4.3 seconds of delay at the Midvale Rd/Alexander Rd intersection. This increase in delay to 25.1 seconds of average vehicle delay at the Midvale/Alexander intersection causes the LOS to fall to "D" which is below the City of Sunnyside standard of "C". It was determined that the addition of an eastbound exclusive left turn lane would provide acceptable LOS of " C " at that intersection.

Table 4. Summary of 2028 No-Build Level of Service and Delay

Intersection	Overall Intersection	Worst Approach Delay (seconds)/ Level of Service
I-82 Westbound ramps/Midvale	$*$	WB-16.1/C
I-82 Eastbound ramps/Midvale	$*$	EB-23.1/C
Midvale/Alexander	$*$	EB-25.1/D
	$*$	EB-21.4/C (1)
Alexander/SR241/Sunnyside-Mabton Rd	$11.9 / \mathrm{B}$	$\mathrm{NB}-12.7 / \mathrm{B}$
Alexander/SR241/Waneta Rd	$8.6 / \mathrm{A}$	$\mathrm{EB}-8.7 / \mathrm{A}$

LEGEND

13.9/B Delay and Level of Service using existing Lane Configuration

* Uncontrolled movements (major street through) not provided for overall intersection analysis for TwoWay Stop Controlled intersections
NB = Northbound, $\mathrm{SB}=$ Southbound, $\mathrm{EB}=$ Eastbound, WB $=$ Westbound
Intersection does not meet LOS Standard
(1) Assumes installation of exclusive eastbound left turn lane

Proposed Sunnyside RNG

The proposed development is situated on approximately 49 acres of the 511 acres of the Midvale Industrial Park. As shown in the Preliminary Plat in Appendix E, access to the site will be a temporary culdesac which connects to Alexander Road approximately one-quarter mile west of Sunnyside-Mabton Road. Other future accesses to the park are envisioned on SR 241 south of Alexander Road and will be evaluated when more is known of potential developments in the Park. The proposed access to Alexander Road of one-quarter mile exceeds the recommended AASHTO access spacing and stopping sight distance. The RNG facility will bring dairy farm waste and agricultural farm residue to the facility for conversion to natural gas.

Trip Generation and Trip Distribution

The Institute of Traffic Engineers Trip Generation Manual $11^{\text {th }}$ Edition was used to quantify the new trips anticipated to be generated by the proposed development. This publication is the standard across the country and is comprised of the results of many national surveys for many land use types and provides trip generation rates and statistics for all-day, AM and PM peak hour conditions as well as other time periods for some land uses. The Sunnyside RNG anticipates having 35 employees, with 12 truck drivers and the majority of the other employees working day shift and a small evening shift. The anticipated trip generation for the Sunnyside RNG, assuming 35 employees is summarized in Table 5.

Table 5. Trip Generation

Measure	Average Weekday	AM Peak Hour	PM Peak Hour
Average Trip Generation Rate per unit*	2.91	0.44	0.42
Percent In	50%	86%	20%
Percent Out	50%	14%	80%
Total Trips(1)	102	15	15
Trips Inbound	51	13	3
Trips Outbound	51	2	12

Land Use: ITE Code) Industrial Park (130)
Independent Variable: Employees
Number of Units: 35
(1) Compare to paragraph below

Given that the Sunnyside RNG facility will be a bit unique with several deliveries of dairy farm waste throughout the day, a comparison was made of the potential trip generation. This methodology assumes that during the PM peak hour each of the 12 trucks would make an inbound delivery of the farm waste and make an outbound trip as well to an anticipated truck storage facility situated on Lester Road north of Sunnyside, via Alexander Road, Midvale Road and I-82 west. For the purposes of this analysis, these truck trips are anticipated to serve the 27 dairy farms shown in Figure 4, with the PM peak hour trips forecast to come from the highlighted sites with the most daily truck loads. The remaining 23 employees were assumed to make trips consistent with the travel patterns at the study intersections, with 20 employees outbound and three employees inbound for the evening shift. This total number of inbound and outbound trips amounts to 47 (15 inbound and 32 outbound), which is more than the ITE Trip Generation Manual and was felt to be a conservatively high estimate and was used for the analysis later in this study.

The estimated trip distribution percentages for the on-site employees and the resulting site generated traffic volumes for both on-site employees as well as the trucks are shown in Figure 5. Site generated trips shown in Figure 5 were added to the 2028 No-Build volumes shown in Figure 3 to estimate the 2028 Build scenario traffic volumes shown in Figure 6. Of note here is that the site generated trips on Waneta Road to/from the I-82 interchange amount to a total of four, which is less than the threshold identified by WSDOT to need to contribute to planned future improvements at the eastbound ramps at that interchange.

Traffic Operations

A capacity analysis using the Highway Capacity Software was also performed at the study intersections as well as at the RNG site access to Alexander Road for the 2028-Build Scenario. The resulting delay and Level of Service (LOS) for the PM peak hour is shown in Table 6, with capacity worksheets included in Appendix D. As with the No-Build Scenario, Level of Service is anticipated to be acceptable LOS at all study intersections except the intersection of Midvale Rd/Alexander Road which will be LOS "D" for the eastbound approach. To mitigate for this deficiency an exclusive eastbound left turn lane would need to be constructed, or as mentioned above, the installation of a traffic signal appears to have been set up using the existing poles for the flashing lights.

Table 6. Summary of 2028 Build PM Peak Hour Delay and Level of Service

Intersection	Overall Intersection	Worst Approach Delay (seconds)/ Level of Service
I-82 Westbound ramps/Midvale	$*$	WB--16.3/C
I-82 Eastbound ramps/Midvale	$*$	EB--24.2/C
Midvale/Alexander	$*$	EB--27.3/D
	$*$	EB--23.0/C (1)
Alexander/SR241/Sunnyside-Mabton Rd	$12.4 / \mathrm{B}$	NB--13.3/B
Alexander/SR241/Waneta Rd	$8.7 / \mathrm{A}$	EB--8.9/A
Alexander Road/RNG Site Access	$*$	NB--11.1/B

LEGEND

13.9/B Delay and Level of Service using existing Lane Configuration

* Uncontrolled movements (major street through) not provided for overall intersection analysis for Two-Way Stop Controlled intersections

NB = Northbound, SB = Southbound, EB = Eastbound, WB = Westbound
Intersection does not meet LOS Standard
(1) Assumes installation of exclusive eastbound left turn lane

Left Turn Lane Analysis

Left-turn lanes provide storage, separate from the major street through lanes, for left-turning vehicles waiting for a gap in opposing traffic at an unsignalized intersection. Left turn lanes can reduce delays and the potential for crashes involving left turning vehicles. In addition, they can allow deceleration clear of the through traffic lanes.

The 2028 Build Scenario traffic volumes shown in Figure 6 were evaluated for the need for left turn lanes using the National Cooperative Highway Research Program (NCHRP) Report 279 Intersection Channelization Design Guide, included in Appendix F. The existing lane configurations shown in Figure 2 identify that there are already major street left turn lanes on Midvale Road for intersections \#1 - \#3, and intersections \#4 and \#5 are stop control and thus would not need left turn lanes for safety purposes. An evaluation for a major street left turn lane on Alexander Road at the RNG site access indicates that there
are forecast to be only 10 westbound left turns with 186 eastbound vehicles. These plotted volumes at less than 7% of the advancing westbound volume are well to the left of the trend lines that would indicate the need for a left turn lane into the site. This exhibit is included in Appendix F.

Right Turn Lane Analysis

Right-turn movements influence intersection capacity even though there is no conflict between rightturning vehicles and opposing traffic. Right-turn lanes might be needed to maintain efficient intersection operation, or to reduce friction between vehicles slowing down and those continuing straight.

The 2028 Build Scenario traffic volumes shown in Figure 6 were evaluated for the need for right turn lanes using the figure below "Right-Turn Lane Guidelines for Two-Lane Roadways" developed from NCHRP Reports 279 and 457. Examination of Figure 6 shows the following right turn volumes at study intersections at the plotted point on the graph below:

- southbound right turn at Midvale/I-82 WB ramps $(178,535)$
- southbound right turn at Midvale/I-82 EB ramps (185,.405)
- southbound right turn at Midvale/Alexander 64, 314)
- northbound right turn at Midvale/Alexander $(29,185)$
- eastbound right turn at RNG site access/Alexander $(5,186)$

As the graphic above shows, with a speed limit of 35 MPH on Midvale Road north of Alexander Road the guidelines indicate that a southbound right turn lane is warranted on Midvale Road at the I-82 westbound ramps intersection. This movement currently has a right turn taper to facilitate traffic slowing down to turn right onto l-82. The southbound right turn volume at this intersection is one-third of the total volume, meaning that travelers on this road are likely to know that a significant portion of the traffic may be slowing down. The intersection does not need a right turn lane for capacity purposes.

Mitigation

The additional traffic added by the proposed development will add some delay at each study intersection. The intersection of Midvale Rd/Alexander Rd will be LOS " D " with development, similar to the 2028 No-Build scenario. The mitigation to achieve acceptable LOS at this intersection is to either add an exclusive eastbound left turn lane, or install traffic signal heads on the existing poles being used for the flashing lights. The Sunnyside RNG is forecast to comprise 2.55% of the traffic at the intersection in the 2028 Build Scenario.

Based on the trip generation and trip distribution assumptions of this study, only four vehicles are anticipated to be added to Waneta Road north of Alexander Road that would pass through the intersection of Waneta Road/l-82 eastbound ramps. This is less than the 10 vehicle threshold identified by WSDOT to need to contribute to planned improvements at that intersection.

Summary and Recommendations

The Sunnyside RNG is a proposed 49 acre industrial site that will make up approximately 10% of the Port of Sunnyside Midvale Industrial Park in the City of Sunnyside, Washington. The initial access to the park will be to Alexander Road approximately one-quarter mile west of Sunnyside-Mabton Road.

This Traffic Impact Analysis was prepared at the request of the City of Sunnyside to ensure that acceptable Levels of Service can be provided at five study intersections on Midvale Road and Alexander Road. The City of Sunnyside's LOS standard for intersections is " C ".

Study area roadway network consists of two lane rural roads with the exception of Midvale Road which has a continuous two-way left turn lane. Traffic volumes were collected in the spring of 2023 at the five study intersections. All five study intersections currently function with acceptable LOS. However, by year 2028 forecast background traffic growth will cause the intersection of Midvale Road/Alexander Road to fall to LOS " D " and require the construction of an exclusive eastbound left turn lane or installation of traffic signal heads on the existing poles being used for the flashing lights.

Collision history for the three most recent years of available data reveals that only 22 collisions occurred at the five study intersections, resulting in four suspected minor injuries and three possible injuries.

The proposed Sunnyside RNG facility will have dairy waste trucked from Yakima Valley dairies to the site for conversion to natural gas. Assuming that each of 12 trucks makes an inbound and outbound trip to the site and that 20 daytime workers depart and 3 evening shift workers arrive during the PM peak hour, it is anticipated to generate approximately 47 PM peak hour trips (15 inbound and 32 outbound).

The additional traffic added by the proposed development will add some delay at each study intersection. The intersection of Midvale Rd/Alexander Rd will be LOS " D " with development, similar to the 2028 No-Build scenario. The mitigation to achieve acceptable LOS at this intersection is to add an exclusive eastbound left turn lane, or install traffic signal heads on the existing poles. The Sunnyside RNG is forecast to comprise 2.55% of the traffic at the intersection in the 2028 Build Scenario.

The site generated trips on Waneta Road to/from the I-82 interchange amount to a total of four, which is less than the threshold identified by WSDOT to need to contribute to planned future improvements at the eastbound ramps at that interchange.

For safety purposes, left turn lane analysis was performed as well at the site entrance. No left turn lane is warranted based on the forecast traffic volumes. All other intersections have left turn lanes for major street movements or are 4-Way stop controlled. A right turn lane analysis was also performed for the intersections on Midvale Road as well as at the site entrance. Forecast volumes indicate that a southbound right turn lane should be considered on Midvale Road at the I-82 westbound ramps. However, this movement currently is served well by a right turn taper which facilitates traffic slowing down to turn right onto I-82. The southbound right turn volume at this intersection is one-third of the total volume, meaning that travelers on this road are likely to know that a significant portion of the traffic may be slowing down. The intersection does not need a right turn lane for capacity purposes.

The development should construct all roadways to city standards with respect to roadway width, curb, gutter and sidewalks, intersection sight distance, etc.

Appendix A

Washington State Department of Transportation e-mail on TIA Scope

From:	Prilucik, Jacob PrilucJ@wsdot.wa.gov
Sent:	Thursday, December 22, 2022 10:34 AM
To:	Spencer Montgomery; Stephanie Ray
Cc:	Shane Fisher; Travis Marden
Subject:	RE: [EXTERNAL] FW: Sunnyside RNG TIA

External Email - This Message originated from outside J-U-B ENGINEERS, Inc.

Spencer,
Please include the I-82 Exit 67 (Midvale) ramp terminals. I don't anticipate any impacts; however, I don't have turning movement counts to verify that. If trip distribution shows 10 or more PM Peak trips to the Exit 69 (Waneta/SR 241) interchange, WSDOT will request a pro-rata contribution towards the city's planned roundabout at the Exit 67 ramp terminal.

Jacob Prilucik
Office: (509) 577-1635 - prilucj@wsdot.wa.gov
Cell: (509) 225-0637

From: Spencer Montgomery smontgomery@JUB.com
Sent: Wednesday, December 21, 2022 2:20 PM
To: Prilucik, Jacob PrilucJ@wsdot.wa.gov; Stephanie Ray sray@hlacivil.com
Cc: Shane Fisher sfisher@sunnyside-wa.gov; Travis Marden tmarden@jub.com
Subject: [EXTERNAL] FW: Sunnyside RNG TIA

WARNING: This email originated from outside of WSDOT. Please use caution with links and attachments.

Greetings, I hope you are enjoying this Christmas season.

I need your input on items to be evaluated for a Traffic Impact Analysis for the project described below. I understand you are aware of this development, there is information below from the project engineer. I've seen numbers of approximately 170 daily truck trips and 34 employee trips. About a year ago we had looked at a different site off Yakima Valley Highway and at the time had forecast 40 truck trips and 18 employee trips during the PM peak hour. Things may have changed slightly, and we'll confirm that when we get started. My question for you all is: if we are in the range of $60-75$ PM peak hour trips accessing Alexander Road west of SH 241, what intersections need to be evaluated as part of the TIA? I would expect that we should do the following:

- new road intersection at Alexander Road
- Alexander Road/SR $241 \frac{1}{4}$ mile to the east
- Alexander Road/Midvale Road $3 / 4$ mile to the west.

Do you see the need to evaluate any other intersections? Are there any other specific issues that need to be evaluated? I assume the PM peak would be adequate?
Thank you!
SPENCER MONTGOMERY
Transportation Planner/Project Manager

[^0]From: Paul Inwards pinwards@jub.com
Sent: Tuesday, November 22, 2022 9:35 AM
To: Spencer Montgomery smontgomery@JUB.com
Cc: Travis Marden tmarden@jub.com
Subject: Sunnyside RNG TIA

Spencer,

When you have time, I need to coordinate scope/fee (and any questions on scope) for a Traffic Impact Analysis required for the Sunnyside Renewable Natural Gas (RNG) facility we are beginning design of. The ~ 50-acre site is located in the Port of Sunnyside's Midvale Industrial Park, generally located south of Alexander Road and west of the SunnysideMabton Road (SR 241). The City will be constructing a new north-south road from Alexander south to the site that will provide the only access to/from the site until the rest of the industrial park is built out.

I believe they have indicated about 100 trucks per day, but we can confirm the traffic numbers with the client prior to the TIA calc's. The client, Pacific Ag Renewables (PAR) hauls cattle waste and crop residue (straw, corn stalks, etc.) from area farms/dairies and runs it through digesters to produce methane that is purified and injected into the natural gas main that runs through the site. Trucks leaving the site also haul the used digestate solids and liquids back to the dairies/farms for disposal. The City of Sunnyside has indicated both City (and/or their consultant HLA) and WSDOT will be reviewing the TIA and warned that WSDOT has a long lead time for their review, so we need to get started soon. Attached is a site plan to get you up to speed on the general layout and location, and I can walk you through the intended circulation. HLA indicated they/City do not have any current traffic counts to provide, so we'll need to collect any data required. Let me know any questions you have on scope. Thanks,

PAUL S. INWARDS, P.E. (WA, ID, OR, AZ, TX)

Senior Project Engineer

J-U-B ENGINEERS, Inc.
3611 S. Zintel Way, Kennewick, WA 99337
e psi@jub.com w www.jub.com
p 5097832144 ext $3034 f 5097360790$

Disclaimer

Note: This e-mail and any attachments involving J-U-B or a subsidiary business may contain information that is confidential and/or proprietary. Prior to use, you agree to the provisions found on the Electronic Documents/Data License, which can be accessed from the footer on the J-U-B home page. If you believe you received this email in error, please reply to that effect and then delete all copies.

This email has been scanned for viruses and malware, and may have been automatically archived.
x

Appendix B

Collision Data 2020-2022
and Accident Rates

Summary of Collision History in Sunnyside RNG Study Area 2020-2022

countr	$\begin{gathered} \text { URISDICTIO } \\ \mathrm{N} \\ \hline \end{gathered}$	arr	PRIMARY TRAFFICWAY	$\begin{array}{\|c\|c\|} \hline \text { Biock } \\ \text { NUMBE } \\ R \\ \hline \end{array}$	INTERSECTING TRAFFICWAY		$\begin{gathered} \text { Repor } \\ \text { NUB } \\ \text { NOB } \end{gathered}$	date	TIME	$\begin{gathered} \text { Most severe inuay } \\ \text { TrPe } \end{gathered}$		N1 fat	tiver	$\underset{\substack{\# \\ \text { ki } \\ \text { ¢ }}}{ }$		Junction reationship	frrst coulsion TPE / OBEET STRUCK	vehlie 1 ACtion	vehlcle 2 Action	MV DRIVER CONTRIBUTING CIRCUMSTANCE 1 (UNIT 1)		VEHILLE COMPAS ORECTI NTO NTO				
Yakima	State Route	minve	22R106728		WBramps	0.34		10/11/2	$18: 4$	ent İiury						Intersection and Related	Fom sme direction- both going straight -one stoppe	Sting in Traficic lane	Signalo	Hought/ Day Dreaming		Vest	vest	vehicle stop	176167	355402.86
rak	Ste Row	nvis	82R106728		weram			09/2	17:43	No Apoarent tiury						Inte	both going staight -one sto	ing strieht Ahead	Stopeedat 5 Signal or Stop S Sig	How Too Closelv			vehic	venicle st		
																				xceeding Reas, Sfate Speed						${ }^{355411.75}$
Yakima			821×0693						18:1			0		.		At Intersection and Reated	irection-one lett turn -one straig		Going Straight Ahead	Improper Tur/Me	south		North	South	1761671.64	${ }^{346499,85}$
Yakima	State Route	Sunnysis	O82 20.693		${ }^{\text {E }}$ R ramp	0.15	Se83	${ }^{05 / 33 / 2021}$	01.16	No Apparest liury		.	${ }^{-2}$	\bigcirc	0	At thersection and Related	Enteringat angle	Making Left Turn	Going Striath Ahea	Under infuence oftal		North				3362636
Yakima	${ }_{\text {ctity }}$ ctreet	$\frac{\text { Sunnysi }}{\text { Sunnsid }}$		0	${ }^{\text {MiIVVaLE }}$ MD		${ }_{\substack{\text { EC2955 } \\ \text { EC2595 }}}$	02/26/2022	${ }_{0}^{08.50}$	Suspected Minor Injur		-	$\bigcirc 2$	\bigcirc		At titersection and Realeded	Entering at angle		Soing Straigt Ahead	Did Not Grant RW tove veicice	West	Est	${ }^{\text {North }}$	North	${ }^{176168308} \mathbf{1 7 6 1 7 2 3}$	${ }^{35353227.365}$
Yakima	city street	Sunnysio	EmERALI Ro	9998	MIIVALE RD		EC1770	01/31/2022	15.01	No Apparent triury			02	0		At It itesection and Reataed	From same direction -all others	Backing	Stopeed at Stinalo 0 Stop Sigr	Improper Backing	Vehicle ${ }^{\text {a }}$	dvenicle				${ }^{353626.36}$
Yakima	city stret	Sunnsid	AlexanoEr R		miovale ro		E853600	07/24/2021	12:45	No Apparent liury		0	02	-		At intersection and Not Related	Fom same direction - both going straight-both moving reare	Going Straight Ahead	Going Straibt Ahead	Distegard Taffic sign and Signals	East	West	Esast	West	1761683.08	${ }^{355322.36}$
Yakima	city street	Sunnysid	Alexander ro		MIVVALE RD		E840048	06/14/2021	14.18	No Apparent thiury		0	0	-	$0_{1 A}$	At titersection and Related	Entering a tangle	Making Left Turn	Soing Straight Ahead	Did Not Grant PW to ve enicie	ast	South	North	South	${ }^{1761688088}$	${ }^{\frac{353626.36}{35626565}}$
Yakima	city Stret	nysio	MIDVALE RD	${ }^{398}$	EmERALD RD		E8254	04/23/2021	21.58	Suspected Minor Iniur				-		At titersection and Reatated	Entering a a angle	6oing Straight Ahead	Soing Straight Ahead	Under Influence of Alcohol	ast	vest	North	south	${ }^{1761683.08} 1$	${ }_{\text {353626.36 }}^{35626565}$
Yakima	city Street	Sunnysi	MIIVVALE RD	${ }^{398}$	$\frac{\text { Emeral }}{\text { AlEXANOER R R }}$		${ }_{\text {E81754 }}^{\text {Ea3900 }}$	${ }^{03 / 2 / 2 / 2021}$	-12.20	No Apparent tiury		\bigcirc		-		At Intersection and Reated	Enteringa a ange	6ing Straigh Afead	$\frac{\text { Goin Straigt }}{\text { Goingead }}$	Did Not Grant f fov so ehicle	West	Etast	North	North		
Yakima	city street	Sunnysid	Miovale ro	0	Alexander ro		EA12822	01/31/2020	17:22	Posisibe l İury		0	0	0	0	At It itersection and Related	From opposite direction - one left tur - one straight	Making Left Turn	Going Straight Ahead	Unknown Distraction	North	East	south	North	176188272	${ }^{353625.71}{ }^{3562571}$
Yakima	city street	Sunnysid	Miovale ro	0			EA1000	01/25/2020	$\frac{14.29}{15.14}$	Possile Iniury				\bigcirc	σ_{At}	At litersection and Reatated	Entering at angle	Making Letet Turn	Goin Straibt Ahead	Did Not Grant RW tove	West	$\xrightarrow{\text { North }}$ North				${ }^{.71}$
Yakima	State Route		241		Alex/s.M Hwy		137	12/31/2021	09:13	Suspected Minor ITiur		1.		.	$g_{A} A$	At Intersection and Reatated	Entering at angle	Sowing	sowing	Exceeding Reas. Ssaf S Seed	North	South	,		1767025.62	${ }^{3535624.53}$
rakima	ate Route		241		Alex/s.M Hwy	${ }^{6.2}$	V715	2/12/222	13.59	No Apparent limur		\bigcirc				t intersection and Related		Going	Making Left Turn	Exceeding Reas. Sfie Speed			West			
Yakima	ate Rout		241		Alex S-M Hwy	6.2		10/08/2020	00.00	Unknown						t intersection and Related	Nood Sign Post	Going Straight Ahead		Onknown Distratit					020.81	
Vakima	de Route		${ }^{241}$		Alex/SM M Wry	6.25		1/31/2020	04.1	vo Apparent liury				。		t 1 terescection and Realaed	ang		Straight Ahead	Did Not Grant RW to vehicle	North	East	West			
rakima			${ }^{241}$		/s-m	6.2		77/2020	11							Sction Reataed but Not	direction -both going straight- both moving			W Too Clos						
Yakima	$\frac{\text { State Route }}{\text { citsteet }}$		${ }^{241}$	${ }_{728}$	$\frac{\text { Alex Waneta }}{\text { SMCIEAN PD }}$	7.25		05/1/2020		No Apparent lijury		\bigcirc	\bigcirc	-	0	At haterection and Reataded	From opposite direction-one left turn- one right turn	$\frac{\text { Making Right Tur }}{\text { Goin Straibt Ahead }}$	Making Left Turn	Did Not Grant RW tovenicle	North	west	south		-	
akkim	city Street	Sunnvic	Alexanoer Ro	728	NMCIEAN RD		[89354]	11/09/2021		No Apparent triury		0	0	0		At Iteresection and Related	From same direction -one left turn -one straight	Overataking and Passing	Making Left Turn	Improper Passing	West	East	West	North	1766361.50	355632.99

Collision Rate Calculations at

 Midvale Road/I-82 westbound rampsRa = System Wide Average Accident Rate 0.6
K = Statistical Constant 1.645
Average Daily Vehicles Entering Intersection
(Estimated, PM peak hour * 10) Northbound 4650
Southbound 4830
Eastbound 0
Westbound 2470
$\mathrm{M}=$ Millions of Vehicles for a three year period = 13.08525Critical Accident Rate $\left.(R C)=R a+K^{*}(R a / M)^{\wedge} .5\right)-1 /(2 * M)$0.9140386Number of Accidents3
Number of Years3
Actual Accident Rate (per Million Entering Vehicles)0.2292658

Collision Rate Calculations at

Midvale Road/I-82 eastbound ramps

Ra = System Wide Average Accident Rate 0.6
K = Statistical Constant 1.645
Average Daily Vehicles Entering Intersection
(Estimated, PM peak hour * 10) Northbound 3170
Southbound 3660
Eastbound 2760
Westbound 0$\mathrm{M}=$ Millions of Vehicles for a three year period =10.50105Critical Accident Rate $\left.(R C)=R a+K^{*}(R a / M)^{\wedge} .5\right)-1 /(2 * M)$0.9455963Number of Accidents2Number of Years3
Actual Accident Rate (per Million Entering Vehicles)0.1904571

Collision Rate Calculations at

Midvale Road/Alexander/Emerald

Ra = System Wide Average Accident Rate 0.6
K = Statistical Constant 1.645
Average Daily Vehicles Entering Intersection
(Estimated, PM peak hour * 10) Northbound 1590
Southbound 2800
Eastbound 910
Westbound 1540
$\mathrm{M}=$ Millions of Vehicles for a three year period = 7.4898
Critical Accident Rate $\left.(R C)=R a+K^{*}(R a / M)^{\wedge} .5\right)-1 /(2 * M)$ 0.9988355
Number of Accidents 10Number of Years3
Actual Accident Rate (per Million Entering Vehicles)1.3351491

Collision Rate Calculations at

Alexander/Sunnyside-Mabton Rd
$\mathrm{Ra}=$ System Wide Average Accident Rate 0.6
K = Statistical Constant 1.645
Average Daily Vehicles Entering Intersection (Estimated, PM peak hour * 10) Northbound 2610
Southbound 2440
Eastbound 1640
Westbound 910
$\mathrm{M}=$ Millions of Vehicles for a three year period = 8.322Critical Accident Rate (RC) $\left.=\operatorname{Ra}+\mathrm{K}^{*}(\mathrm{Ra} / \mathrm{M})^{\wedge} .5\right)-1 /\left(2^{*} \mathrm{M}\right)$0.9816186
Number of Accidents 6
Number of Years3
Actual Accident Rate (per Million Entering Vehicles)0.7209805

Collision Rate Calculations at

Alexander/Waneta Rd

Ra $=$ System Wide Average Accident Rate		0.6
$\mathrm{K}=$ Statistical Constant		1.645
Average Daily Vehicles Entering Intersection (Estimated, PM peak hour * 10) Northbound 960		
	Southbound	1910
	Eastbound	960
	Westbound	60
$\mathrm{M}=$ Millions of Vehicles for a three year period =		4.25955
Critical Accident Rate (RC) = Ra+K*(Ra/M)^.5)-1/(2*M)		1.1000068
	Number of Accidents	1
	Number of Years	3
Actual Accident Rate (per Million Entering Vehicles)		0.2347666

Appendix C

Traffic Count Data

www.idaxdata.com
Two-Hour Count Summaries - Heavy Vehicles

Interval Start	I-82 WB Ramps				I-82 WB Ramps				Midvale Rd				S 1st St				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT		
4:00 PM	0	0	0	0	0	1	1	0	0	3	6	0	0	0	5	1	17	0
4:15 PM	0	0	0	0	0	6	0	2	0	3	2	0	0	0	2	0	15	0
4:30 PM	0	0	0	0	0	4	0	1	0	2	5	0	0	0	3	1	16	0
4:45 PM	0	0	0	0	0	0	0	2	0	3	3	0	0	0	0	1	9	57
5:00 PM	0	0	0	0	0	1	0	0	0	1	2	0	0	0	4	1	9	49
5:15 PM	0	0	0	0	0	1	0	4	0	2	1	0	0	0	1	3	12	46
5:30 PM	0	0	0	0	0	2	0	0	0	1	1	0	0	0	0	1	5	35
5:45 PM	0	0	0	0	0	4	0	0	0	1	1	0	0	0	0	0	6	32
Count Total	0	0	0	0	0	19	1	9	0	16	21	0	0	0	15	8	89	0
Peak Hour	0	0	0	0	0	11	0	5	0	9	12	0	0	0	9	3	49	0

Two-Hour Count Summaries - Bikes

Interval Start	1-82 WB Ramps			I-82 WB Ramps			Midvale Rd			S 1st St			$\begin{gathered} 15-\mathrm{min} \\ \text { Total } \end{gathered}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com
Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Emerald Rd				Alexander Rd				Midvale Rd				Midvale Rd				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT		
4:00 PM	0	0	2	0	0	0	0	1	0	0	5	1	0	4	6	0	19	0
4:15 PM	0	1	1	0	0	0	0	1	0	0	3	3	0	1	7	4	21	0
4:30 PM	0	0	1	0	0	0	0	0	0	0	3	1	0	1	6	0	12	0
4:45 PM	0	0	0	0	0	0	0	2	0	0	4	2	0	1	0	0	9	61
5:00 PM	0	1	0	0	0	0	0	1	0	0	3	0	0	1	3	0	9	51
5:15 PM	0	0	0	0	0	0	0	0	0	0	3	0	0	2	1	0	6	36
5:30 PM	0	0	0	0	0	0	0	1	0	0	2	0	0	2	3	0	8	32
5:45 PM	0	0	0	0	0	1	0	0	0	0	1	0	0	6	3	0	11	34
Count Total	0	2	4	0	0	1	0	6	0	0	24	7	0	18	29	4	95	0
Peak Hour	0	1	4	0	0	0	0	4	0	0	15	7	0	7	19	4	61	0

Two-Hour Count Summaries - Bikes

Interval Start	Emerald Rd			Alexander Rd			Midvale Rd			Midvale Rd			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.
www.idaxdata.com
Two-Hour Count Summaries - Heavy Vehicles

Interval Start	I-82 EB Ramps				0				Midvale Rd				Midvale Rd				$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT		
4:00 PM	0	2	0	5	0	0	0	0	0	2	6	0	0	0	2	4	21	0
4:15 PM	0	1	0	4	0	0	0	0	0	0	6	0	0	0	8	0	19	0
4:30 PM	0	1	0	2	0	0	0	0	0	0	2	0	0	0	5	2	12	0
4:45 PM	0	1	0	2	0	0	0	0	0	1	5	0	0	0	0	0	9	61
5:00 PM	0	0	0	0	0	0	0	0	0	2	3	0	0	0	4	1	10	50
5:15 PM	0	0	0	2	0	0	0	0	0	1	2	0	0	0	1	1	7	38
5:30 PM	0	1	0	4	0	0	0	0	0	1	3	0	0	0	2	0	11	37
5:45 PM	0	1	0	3	0	0	0	0	0	0	2	0	0	0	4	0	10	38
Count Total	0	7	0	22	0	0	0	0	0	7	29	0	0	0	26	8	99	0
Peak Hour	0	5	0	13	0	0	0	0	0	3	19	0	0	0	15	6	61	0

Two-Hour Count Summaries - Bikes

Interval Start	I-82 EB Ramps			0			Midvale Rd			Midvale Rd			15-min Total	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com
Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Alexander Rd				Alexander Rd				Sunnyside Mabton Rd				Sunnyside Mabton Rd				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT		
4:00 PM	0	2	3	0	0	0	1	0	0	0	1	1	0	1	0	0	9	0
4:15 PM	0	2	5	0	0	0	2	0	0	1	1	0	0	2	0	0	13	0
4:30 PM	0	0	2	0	0	0	0	0	0	0	1	0	0	0	1	0	4	0
4:45 PM	0	0	0	0	0	0	3	1	0	1	0	1	0	0	0	0	6	32
5:00 PM	0	0	1	2	0	0	0	0	0	0	0	0	0	1	0	1	5	28
5:15 PM	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	3	18
5:30 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	15
5:45 PM	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	2	11
Count Total	0	4	11	3	0	1	7	1	0	3	4	2	0	4	2	1	43	0
Peak Hour	0	2	8	2	0	0	5	1	0	2	2	1	0	3	1	1	28	0

Two-Hour Count Summaries - Bikes

Interval Start	Alexander Rd			Alexander Rd			Sunnyside Mabton Rd			Sunnyside Mabton Rd			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

www.idaxdata.com
Two-Hour Count Summaries - Heavy Vehicles

Interval Start	Alexander Rd				Alexander Rd				Waneta Rd				Waneta Rd				15-min Total	Rolling One Hour
	Eastbound				Westbound				Northbound				Southbound					
	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT		
4:00 PM	0	2	0	3	0	0	0	0	0	1	3	0	0	0	2	0	11	0
4:15 PM	0	6	0	0	0	0	0	0	0	0	0	0	0	0	1	2	9	0
4:30 PM	0	1	0	2	0	0	0	0	0	0	1	0	0	0	2	1	7	0
4:45 PM	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	3	6	33
5:00 PM	0	2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	3	25
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	17
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	5
Count Total	0	12	0	6	0	0	0	1	0	1	4	0	0	0	7	7	38	0
Peak Hour	0	10	0	6	0	0	0	1	0	1	4	0	0	0	5	6	33	0

Two-Hour Count Summaries - Bikes

Interval Start	Alexander Rd			Alexander Rd			Waneta Rd			Waneta Rd			$\begin{aligned} & \text { 15-min } \\ & \text { Total } \end{aligned}$	Rolling One Hour
	Eastbound			Westbound			Northbound			Southbound				
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Appendix D:

Highway Capacity Software Level of Service Worksheets

General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$2 / 2 / 2023$
Analysis Year	2023
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	Sunnyside RNG

Site Information

Intersection	I-82 WB ramps/Midvale Roa
Jurisdiction	City of Sunyside
East/West Street	I-82 westbound ramps
North/South Street	Midvale Road
Peak Hour Factor	0.93
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		1	0	1	0	1	1	0	0	0	1	0
Configuration						L		R		L	T					TR
Volume (veh/h)						32		215		70	395				322	161
Percent Heavy Vehicles (\%)						3		3		3						
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized					No											
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2		4.1						
Critical Headway (sec)						7.13		6.23		4.13						
Base Follow-Up Headway (sec)						3.5		3.3		2.2						
Follow-Up Headway (sec)						3.53		3.33		2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$2 / 2 / 2023$
Analysis Year	2023
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	Sunnyside RNG

Site Information

Intersection	I-82 EB ramps/Midvale Rd
Jurisdiction	City of Sunyside
East/West Street	I-82 eastbound ramps
North/South Street	Midvale Road
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	0
Configuration			LR							L	T					TR
Volume (veh/h)		189		87						38	279				198	168
Percent Heavy Vehicles (\%)		3		3						3						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$2 / 2 / 2023$
Analysis Year	2023
Time Analyzed	PM Peak Hour
Intersection Orientation	North-South
Project Description	Sunnyside RNG

Site Information

Intersection	Midvale/Alexander
Jurisdiction	City of Sunyside
East/West Street	Alexander Rd
North/South Street	Midvale Road
Peak Hour Factor	0.91
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	1	0	0	1	1	0
Configuration			LTR				LTR			L		TR		L		TR
Volume (veh/h)		59	31	1		13	25	116		1	132	26		106	116	58
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

HCS7 All-Way Stop Control Report

General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$2 / 2 / 2023$
Analysis Year	2023
Analysis Time Period (hrs)	0.25
Time Analyzed	PM Peak Hour
Project Description	Sunnyside RNG

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	63	50	51	37	33	21	58	189	14	26	177	41
\% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	176			98			281			262		
Percent Heavy Vehicles	7			7			2			2		

Departure Headway and Service Time

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	176		98		281		262		
Capacity	654		631		702		711		
95\% Queue Length, Q ${ }_{95}$ (veh)	1.1		0.5		1.9		1.7		
Control Delay (s/veh)	10.5		9.7		11.5		11.0		
Level of Service, LOS	B		A		B		B		
Approach Delay (s/veh)		10.5		9.7		11.5		11.0	
Approach LOS		B		A		B		B	
Intersection Delay, s/veh \| LOS	10.9				B				

HCS7 All-Way Stop Control Report

General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$2 / 2 / 2023$
Analysis Year	2023
Analysis Time Period (hrs)	0.25
Time Analyzed	PM Peak Hour
Project Description	Sunnyside RNG

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	61	3	32	2	2	2	22	74	0	8	111	72
\% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	101			6			101			201		
Percent Heavy Vehicles	17			17			5			6		

Departure Headway and Service Time

Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20			
Initial Degree of Utilization, x	0.090			0.006			0.090			0.179			
Final Departure Headway, hd (s)	4.80			4.87			4.51			4.17			
Final Degree of Utilization, x	0.135			0.009			0.127			0.233			
Move-Up Time, m (s)	2.0			2.0			2.0			2.0			
Service Time, ts (s)	2.80			2.87			2.51			2.17			

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	101		6		101		201		
Capacity	750		739		798		863		
95\% Queue Length, Q_{95} (veh)	0.5		0.0		0.4		0.9		
Control Delay (s/veh)	8.5		7.9		8.2		8.4		
Level of Service, LOS	A		A		A		A		
Approach Delay (s/veh)		8.5		7.9		8.2		8.4	
Approach LOS		A		A		A		A	
Intersection Delay, s/veh \| LOS	8.4				A				

General Information

Analyst	Montgomery	Intersection	I-82 WB ramps/Midvale Rd
Agency/Co.	JUB Engineers	Jurisdiction	City of Sunyside
Date Performed	$7 / 3 / 2023$	East/West Street	I-82 westbound ramps
Analysis Year	2028	North/South Street	Midvale Road
Time Analyzed	PM Peak Hour - No-Build	Peak Hour Factor	0.93
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Sunnyside RNG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		1	0	1	0	1	1	0	0	0	1	0
Configuration						L		R		L	T					TR
Volume (veh/h)						35		237		77	436				356	178
Percent Heavy Vehicles (\%)						3		3		3						
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized					No											
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2		4.1						
Critical Headway (sec)						7.13		6.23		4.13						
Base Follow-Up Headway (sec)						3.5		3.3		2.2						
Follow-Up Headway (sec)						3.53		3.33		2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$7 / 3 / 2023$
Analysis Year	2028
Time Analyzed	PM Peak Hour - No-Build
Intersection Orientation	North-South
Project Description	Sunnyside RNG

Site Information

Intersection	I-82 EB ramps/Midvale Rd
Jurisdiction	City of Sunyside
East/West Street	I-82 eastbound ramps
North/South Street	Midvale Road
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	0
Configuration			LR							L	T					TR
Volume (veh/h)		209		96						42	308				219	185
Percent Heavy Vehicles (\%)		3		3						3						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$7 / 3 / 2023$
Analysis Year	2028
Time Analyzed	PM Peak Hour - No-Build
Intersection Orientation	North-South
Project Description	Sunnyside RNG

Site Information

Intersection	Midvale/Alexander
Jurisdiction	City of Sunyside
East/West Street	Alexander Rd
North/South Street	Midvale Road
Peak Hour Factor	0.91
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	1	0	0	1	1	0
Configuration			LTR				LTR			L		TR		L		TR
Volume (veh/h)		65	34	1		14	28	128		1	146	29		117	128	64
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		

Delay, Queue Length, and Level of Service

HCS7 Two-Way Stop-Control Report

General Information

Analyst
Agency/Co.
Date Performed
Analysis Year
Time Analyzed
Intersection Orientation
Project Description

Project Description

Site Information

Intersection
Jurisdiction
East/West Street
North/South Street
Peak Hour Factor
Analysis Time Period (hrs)

Midvale/Alexander
City of Sunyside
Alexander Rd
Midvale Road
0.91
0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		1	1	0		0	1	0	0	1	1	0	0	1	1	0
Configuration		L		TR			LTR			L		TR		L		TR
Volume (veh/h)		65	34	1		14	28	128		1	146	29		117	128	64
Percent Heavy Vehicles (\%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															

Critical and Follow-up Headways

Delay, Queue Length, and Level of Service

HCS7 All-Way Stop Control Report
General Information

Analyst	Montgomery	Intersection	Alexander/SR 241/Suny-Mab
Agency/Co.	JUB Engineers	Jurisdiction	City of Sunnyside
Date Performed	$7 / 3 / 2023$	East/West Street	Alexander Rd/SR 241
Analysis Year	2028	North/South Street	SR241/Sunnyside-Mabton Rd
Analysis Time Period (hrs)	0.25	Peak Hour Factor	0.93
Time Analyzed	PM Peak Hour-No-Build		
Project Description	Sunnyside RNG		

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	70	55	56	41	36	23	64	209	15	29	195	45
\% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	195			108			310			289		
Percent Heavy Vehicles	7			7			2			2		

Departure Headway and Service Time

Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20			
Initial Degree of Utilization, x	0.173			0.096			0.275			0.257			
Final Departure Headway, hd (s)	5.72			5.96			5.31			5.25			
Final Degree of Utilization, x	0.309			0.178			0.457			0.422			
Move-Up Time, m (s)	2.0			2.0			2.0			2.0			
Service Time, ts (s)	3.72			3.96			3.31			3.25			

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	195		108		310		289		
Capacity	629		604		678		685		
95\% Queue Length, Q_{95} (veh)	1.3		0.6		2.4		2.1		
Control Delay (s/veh)	11.3		10.2		12.7		12.0		
Level of Service, LOS	B		B		B		B		
Approach Delay (s/veh)		11.3		10.2		12.7		12.0	
Approach LOS		B		B		B		B	
Intersection Delay, s/veh \| LOS	11.9				B				

HCS7 All-Way Stop Control Report

General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$7 / 3 / 2023$
Analysis Year	2028
Analysis Time Period (hrs)	0.25
Time Analyzed	PM Peak Hour - No-Build
Project Description	Sunnyside RNG

Site Information

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	67	3	35	2	2	2	24	82	0	9	123	79
\% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	111			6			112			222		
Percent Heavy Vehicles	17			17			5			6		

Departure Headway and Service Time

Initial Departure Headway, hd (s)	3.20			3.20			3.20			3.20			
Initial Degree of Utilization, x	0.098			0.006			0.099			0.197			
Final Departure Headway, hd (s)	4.88			4.96			4.57			4.22			
Final Degree of Utilization, x	0.150			0.009			0.142			0.260			
Move-Up Time, m (s)	2.0			2.0			2.0			2.0			
Service Time, ts (s)	2.88			2.96			2.57			2.22			

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	111		6		112		222		
Capacity	738		725		788		854		
95\% Queue Length, Q_{95} (veh)	0.5		0.0		0.5		1.0		
Control Delay (s/veh)	8.7		8.0		8.3		8.7		
Level of Service, LOS	A		A		A		A		
Approach Delay (s/veh)		8.7		8.0		8.3		8.7	
Approach LOS		A		A		A		A	
Intersection Delay, s/veh \| LOS	8.6				A				

General Information

Analyst	Montgomery	Intersection	I-82 WB ramps/Midvale Rd
Agency/Co.	JUB Engineers	Jurisdiction	City of Sunyside
Date Performed	$7 / 3 / 2023$	East/West Street	I-82 westbound ramps
Analysis Year	2028	North/South Street	Midvale Road
Time Analyzed	PM Peak Hour - Build	Peak Hour Factor	0.93
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Sunnyside RNG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	0	0		1	0	1	0	1	1	0	0	0	1	0
Configuration						L		R		L	T					TR
Volume (veh/h)						35		237		91	441				357	178
Percent Heavy Vehicles (\%)						3		3		16						
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized					No											
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2		4.1						
Critical Headway (sec)						7.13		6.23		4.26						
Base Follow-Up Headway (sec)						3.5		3.3		2.2						
Follow-Up Headway (sec)						3.53		3.33		2.34						

Delay, Queue Length, and Level of Service

General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$7 / 3 / 2023$
Analysis Year	2028
Time Analyzed	PM Peak Hour - Build
Intersection Orientation	North-South
Project Description	Sunnyside RNG
Inal\|	

Site Information

Intersection	I-82 EB ramps/Midvale Rd
Jurisdiction	City of Sunyside
East/West Street	I-82 eastbound ramps
North/South Street	Midvale Road
Peak Hour Factor	0.92
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	0
Configuration			LR							L	T					TR
Volume (veh/h)		209		100						42	327				220	185
Percent Heavy Vehicles (\%)		3		7						3						
Proportion Time Blocked																
Percent Grade (\%)	0															
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.27						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.36						2.23						

Delay, Queue Length, and Level of Service

General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$7 / 3 / 2023$
Analysis Year	2028
Time Analyzed	PM Peak Hour - Build
Intersection Orientation	North-South
Project Description	Sunnyside RNG

Site Information

Intersection	Midvale/Alexander
Jurisdiction	City of Sunyside
East/West Street	Alexander Rd
North/South Street	Midvale Road
Peak Hour Factor	0.91
Analysis Time Period (hrs)	0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4 U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	1	0	0	1	1	0
Configuration			LTR				LTR			L		TR		L		TR
Volume (veh/h)		65	34	1		15	30	147		1	146	29		122	128	64
Percent Heavy Vehicles (\%)		3	3	3		3	3	11		3				7		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															
Critical and Follow-up Headways																
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.31		4.13				4.17		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.40		2.23				2.26		

Delay, Queue Length, and Level of Service

[^1]
HCS7 Two-Way Stop-Control Report

General Information

Analyst
Agency/Co.
Date Performed
Analysis Year
Time Analyzed
Intersection Orientation
Project Description

Project Description

Site Information

Intersection
Jurisdiction
East/West Street
North/South Street
Peak Hour Factor
Analysis Time Period (hrs)

Midvale/Alexander
City of Sunyside
Alexander Rd
Midvale Road
0.91
0.25

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1 U	1	2	3	4 U	4	5	6
Number of Lanes		1	1	0		0	1	0	0	1	1	0	0	1	1	0
Configuration		L		TR			LTR			L		TR		L		TR
Volume (veh/h)		65	34	1		15	30	147		1	146	29		122	128	64
Percent Heavy Vehicles (\%)		3	3	3		3	3	11		3				7		
Proportion Time Blocked																
Percent Grade (\%)	0				0											
Right Turn Channelized																
Median Type \| Storage	Undivided															

Critical and Follow-up Headways

Delay, Queue Length, and Level of Service

HCS7 All-Way Stop Control Report
General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$7 / 3 / 2023$
Analysis Year	2028
Analysis Time Period (hrs)	0.25
Time Analyzed	PM Peak Hour-Build
Project Description	Sunnyside RNG

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	74	58	59	41	39	32	68	209	15	29	195	48
\% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	205			120			314			292		
Percent Heavy Vehicles	12			8			3			3		

Departure Headway and Service Time

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	205		120		314		292		
Capacity	610		597		661		668		
95\% Queue Length, Q ${ }_{95}$ (veh)	1.5		0.7		2.6		2.2		
Control Delay (s/veh)	11.9		10.6		13.3		12.5		
Level of Service, LOS	B		B		B		B		
Approach Delay (s/veh)		11.9		10.6		13.3		12.5	
Approach LOS		B		B		B		B	
Intersection Delay, s/veh \| LOS	12.4				B				

HCS7 All-Way Stop Control Report

General Information

Analyst	Montgomery
Agency/Co.	JUB Engineers
Date Performed	$7 / 3 / 2023$
Analysis Year	2028
Analysis Time Period (hrs)	0.25
Time Analyzed	PM Peak Hour - Build
Project Description	Sunnyside RNG

Site Information

Lanes

Vehicle Volume and Adjustments

Approach	Eastbound			Westbound			Northbound			Southbound		
Movement	L	T	R	L	T	R	L	T	R	L	T	R
Volume	69	3	36	2	2	2	25	82	0	9	123	81
\% Thrus in Shared Lane												
Lane	L1	L2	L3	L1	L2	L3	L1	L2	L3	L1	L2	L3
Configuration	LTR			LTR			LTR			LTR		
Flow Rate, v (veh/h)	114			6			113			224		
Percent Heavy Vehicles	20			17			6			7		

Departure Headway and Service Time

Capacity, Delay and Level of Service

Flow Rate, v (veh/h)	114		6		113		224		
Capacity	729		723		782		848		
95\% Queue Length, Q_{95} (veh)	0.6		0.0		0.5		1.1		
Control Delay (s/veh)	8.9		8.0		8.4		8.8		
Level of Service, LOS	A		A		A		A		
Approach Delay (s/veh)		8.9		8.0		8.4		8.8	
Approach LOS		A		A		A		A	
Intersection Delay, s/veh \| LOS	8.7				A				

General Information

Analyst	Montgomery	Intersection	Alexander/RNG Site Access
Agency/Co.	JUB Engineers	Jurisdiction	City of Sunyside
Date Performed	$7 / 3 / 2023$	East/West Street	Alexander Roasd
Analysis Year	2028	North/South Street	Sunnyside RNG Site Access
Time Analyzed	PM Peak Hour - Build	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Sunnyside RNG		

Lanes

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			181	5		10	146			22		10				
Percent Heavy Vehicles (\%)						80				55		3				
Proportion Time Blocked																
Percent Grade (\%)					0											
Right Turn Channelized																
Median Type \| Storage	Left Only								1							
Critical and Follow-up Headways																
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.90				6.95		6.23				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.92				4.00		3.33				

Delay, Queue Length, and Level of Service

Appendix E

Midvale Industrial Park Layout And Sunnyside RNG Site

Appendix F

Turn Lane Analysis Guidance

Figure 4-12. Volume warrants for left-turn lanes at unsignalized intersections. (Source: Ref. 4-7)
a partially shadowed left-turn lane, as illustrated in Figure 4-14. With partially shadowed left-turn lanes, the offset created by the approach taper does not entirely protect or "shadow" the turn lane.

Length of Lane

The left-turn lane length is among the most important design element of left-turn lanes. Its design is directly tied to the particular function of the lane, which is based on prevailing speeds,
traffic volumes, and traffic control. The design basis for length can be deceleration, storage, or a combination of both.
Left-turn lanes on high-speed highways should be designed to accommodate vehicle deceleration and braking. The channelization principle of removing slow or decelerating vehicles from through traffic applies at such locations. Figure 4-15 illustrates the functional basis for design of deceleration-based left-turn lanes according to AASHTO. The assumed "reasonable" driver behavior includes deceleration in gear for 3 sec ., followed by comfortable braking completely within the turning lane. Where constraints exist and speeds are moderate, an al-

[^0]: J-U-B ENGINEERS, Inc.
 3611 South Zintel Way, Kennewick, WA 9933
 e smontgomery@jub.com w www.jub.com

[^1]: Copyright © 2023 University of Florida. All Rights Reserved.

